NEW YORK

FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

Scientific name: Styela plicata
Common names: Asian Sea Squirt, leathery tunicate, pleated sea squirt, solitary ascidian
Native distribution: West Indies, Gulf of Mexico
Date assessed: 7/2/2013
Assessors: Erin L. White

New York Invasiveness Rank: Moderate (Relative Maximum Score 50.00-69.99)

Distribution and Invasiveness Rank *(Obtain from PRISM invasiveness ranking form)*

<table>
<thead>
<tr>
<th>Status of this species in each PRISM:</th>
<th>Current Distribution</th>
<th>PRISM Invasiveness Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adirondack Park Invasive Program</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>2 Capital/Mohawk</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>3 Catskill Regional Invasive Species Partnership</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>4 Finger Lakes</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>5 Long Island Invasive Species Management Area</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>6 Lower Hudson</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>7 Saint Lawrence/Eastern Lake Ontario</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
<tr>
<td>8 Western New York</td>
<td>Not Assessed</td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Invasiveness Ranking Summary *(see details under appropriate sub-section)*

<table>
<thead>
<tr>
<th>Invasiveness Ranking</th>
<th>Total (Total Answered*)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecological impact</td>
<td>30 (20)</td>
<td>10</td>
</tr>
<tr>
<td>Biological characteristic and dispersal ability</td>
<td>30 (30)</td>
<td>26</td>
</tr>
<tr>
<td>Ecological amplitude and distribution</td>
<td>30 (25)</td>
<td>12</td>
</tr>
<tr>
<td>Difficulty of control</td>
<td>10 (7)</td>
<td>3</td>
</tr>
<tr>
<td>Outcome score</td>
<td>100 (82)(^{b})</td>
<td>51(^{a})</td>
</tr>
<tr>
<td>Relative maximum score (^{†})</td>
<td></td>
<td>62.195</td>
</tr>
<tr>
<td>New York Invasiveness Rank (^{§})</td>
<td>Moderate (Relative Maximum Score 50.00-69.99)</td>
<td></td>
</tr>
</tbody>
</table>

*For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.”

\(^{†}\)Calculated as $100(a/b)$ to two decimal places.

\(^{§}\)Very High >80.00; High 70.00–80.00; Moderate 50.00–69.99; Low 40.00–49.99; Insignificant <40.00

A. DISTRIBUTION (KNOWN/POTENTIAL): Summarized from individual PRISM forms

- ☐ Yes – continue to A1.2
 - ☒ No – continue to A2.1; Yes ☒ NA; Yes ☒ USA

A1.2. In which PRISMs is it known (see inset map)?

- ☐ Adirondack Park Invasive Program
- ☐ Capital/Mohawk
- ☐ Catskill Regional Invasive Species Partnership
- ☐ Finger Lakes
- ☐ Long Island Invasive Species Management Area
- ☐ Lower Hudson
- ☐ Saint Lawrence/Eastern Lake Ontario
Western New York

Documentation:
Sources of information:

A2.0. Is this species listed on the Federal Injurious Fish and Wildlife list?
☑ Yes – the species will automatically be listed as Prohibited, no further assessment required.
☒ No – continue to A2.1

A2.1. What is the likelihood that this species will occur and persist given the climate in the following PRISMs? (obtain from PRISM invasiveness ranking form and/or Climatch score)
Zero likelihood Adirondack Park Invasive Program
Unlikely Capital/Mohawk
Moderately Likely Catskill Regional Invasive Species Partnership
Zero likelihood Finger Lakes
Moderately Likely Long Island Invasive Species Management Area
Moderately Likely Lower Hudson
Zero likelihood Saint Lawrence/Eastern Lake Ontario
Zero likelihood Western New York

Documentation:
Sources of information (e.g.: distribution models, literature, expert opinions):

If the species does not occur and is not likely to survive and reproduce within any of the PRISMs, then stop here as there is no need to assess the species.

A2.2. What is the current distribution of the species in each PRISM? (obtain rank from PRISM invasiveness ranking forms)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Adirondack Park Invasive Program</th>
<th>Capital/Mohawk</th>
<th>Catskill Regional Invasive Species Partnership</th>
<th>Finger Lakes</th>
<th>Long Island Invasive Species Management Area</th>
<th>Lower Hudson</th>
<th>Saint Lawrence/Eastern Lake Ontario</th>
<th>Western New York</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Assessed</td>
<td></td>
<td>Not Assessed</td>
</tr>
</tbody>
</table>

Documentation:
Sources of information:

A2.3. Describe the potential or known suitable habitats within New York. Natural habitats include all habitats not under active human management. Managed habitats are indicated with an asterisk.

Aquatic Habitats
☒ Marine
☒ Salt/brackish waters
☐ Freshwater tidal
☐ Rivers/streams
☐ Natural lakes and ponds
☐ Vernal pools
☐ Reservoirs/impoundments*

Wetland Habitats
☒ Salt/brackish marshes
☐ Freshwater marshes
☐ Peatlands
☐ Shrub swamps
☐ Forested wetlands/riparian
☐ Ditches*
☐ Beaches/or coastal dunes

Upland Habitats
☐ Cultivated*
☐ Grasslands/old fields
☐ Shrublands
☐ Forests/woodlands
☐ Alpine
☐ Roadsides*
☐ Cultural*

Other potential or known suitable habitats within New York:

Documentation:
Sources of information:
ISSG, 2013
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

B. INVASIVENESS RANKING

1. ECOLOGICAL IMPACT

1.1. Impact on Ecosystem Processes and System-wide Parameters (e.g., water cycle, energy cycle, nutrient and mineral dynamics, light availability, or geomorphological changes (erosion and sedimentation rates).

- A. No perceivable impact on ecosystem processes based on research studies, or the absence of impact information if a species is widespread (>10 occurrences in minimally managed areas), has been well-studied (>10 reports/publications), and has been present in the northeast for >100 years.

 Score: 0

- B. Influences ecosystem processes to a minor degree, has a perceivable but mild influence

 Score: 3

- C. Significant alteration of ecosystem processes

 Score: 7

- D. Major, possibly irreversible, alteration or disruption of ecosystem processes

 Score: 10

- U. Unknown

Documentation:
Identify ecosystem processes impacted (or if applicable, justify choosing answer A in the absence of impact information).

Most of the literature reviewed for this species addresses how ecosystem processes affect this species rather than the other way around. These organisms provide a substrate for colonization by other benthic community members; however, they also destabilize the community following establishment, as they slough off of substrates when large in size and take other colonizers with them (Sutherland 1978).

Sources of information:
(Sutherland, 1978)

<table>
<thead>
<tr>
<th>Score</th>
<th>3</th>
</tr>
</thead>
</table>

1.2. Impact on Natural Habitat/ Community Composition

- A. No perceived impact; causes no apparent change in native populations

 Score: 0

- B. Influences community composition (e.g., reduces the number of individuals of one or more native species in the community)

 Score: 3

- C. Significantly alters community composition (e.g., produces a significant reduction in the population size of one or more native species in the community)

 Score: 7

- D. Causes major alteration in community composition (e.g., results in the extirpation of one or several native species, reducing biodiversity or change the community composition towards species exotic to the natural community)

 Score: 10

- U. Unknown

Documentation:
Identify type of impact or alteration:

There is evidence to suggest that S. plicata excludes other species from the area it occupies and may inhibit growth or settlement of native species and may compete with shellfish for food. However, this species does act as a host to many organisms as well and the degree of negative impact on native species is unclear (CABI 2013).

Sources of information:
(CABI, 2013)

<table>
<thead>
<tr>
<th>Score</th>
<th>3</th>
</tr>
</thead>
</table>

1.3. Impact on other species or species groups, including cumulative impact of this species on other organisms in the community it invades. (e.g., interferes with native predator/ prey dynamics; injurious components/ spines; reduction in spawning; hybridizes with a native species; hosts a non-native disease which impacts a native species)

- A. Negligible perceived impact

 Score: 0

- B. Minor impact (e.g. impacts 1 species, <20% population decline, limited host damage)

 Score: 3
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

C. Moderate impact (e.g. impacts 2-3 species and/or 20-29% population decline of any 1 species, kills host in 2-5 years,)

D. Severe impact on other species or species groups (e.g. impacts >3 species and/or ≥30% population decline of any 1 species, kills host within 2 years, extirpation)

U. Unknown

Score 7

Documentation:
Identify type of impact or alteration:
There is evidence to suggest that S. plicata excludes other species from the area it occupies and may inhibit growth or settlement of native species and may compete with shellfish for food. However, this species does act as a host to many organisms as well and the degree of negative impact on native species is unclear (CABI 2013). Sutherland (1978) found S. plicata to stabilize invertebrate benthic communities short-term, but also this species may also destabilize the community in the fall when they slough off due to their large size and take other organisms with them.
Sources of information:
(CABI, 2013; Sutherland, 1978)

Total Possible 20
Section One Total 10

2. BIOLOGICAL CHARACTERISTICS AND DISPERSAL ABILITY

2.1. Mode and rate of reproduction (provisional thresholds, more investigation needed)

A. No reproduction (e.g. sterile with no sexual or asexual reproduction). 0

B. Limited reproduction (e.g., intrinsic rate of increase <10%, low fecundity, complete one life cycle) 1

C. Moderate reproduction (e.g., intrinsic rate of increase between 10-30%, moderate fecundity, complete 2-3 life cycles) 2

D. Abundant reproduction (e.g., intrinsic rate of increase >30%, parthenogenesis, large egg masses, complete > 3 life cycles) 4

U. Unknown

Score 4

Documentation:
Describe key reproductive characteristics:
S. plicata has a long breeding season (spring, summer, and fall) (Lambert and Lambert 1998) and is a protandric hermaphrodite and therefore does not require other individuals to reproduce (ISSG 2013).
Sources of information:
(Invasive Species Specialist Group (ISSG), 2013; Lambert & Lambert, 1998)

2.2. Migratory behavior

A. Always migratory in its native range 0

B. Non-migratory or facultative migrant in its native range 2

U. Unknown

Score 2

Documentation:
Describe migratory behavior:
Sources of information:

2.3. Biological potential for colonization by long-distance dispersal/ movement (e.g., veligers, resting stage eggs, glochidia)

A. No long-distance dispersal/ movement mechanisms 0
B. Adaptations exist for long-distance dispersal, but studies report that most individuals (90%) establish territories within 5 miles of natal origin or within a distance twice the home range of the typical individual, and tend not to cross major barriers such as dams and watershed divides

C. Adaptations exist for long-distance dispersal, movement and evidence that offspring often disperse greater than 5 miles of natal origin or greater than twice the home range of typical individual and will cross major barriers such as dams and watershed divides

U. Unknown

Score 0

Documentation:
Identify dispersal mechanisms:
There does not appear to be a resting stage with eggs, larvae can swim up to two days following hatching (ISSG 2013) depending on water temperature. David et al. (2010) speculate dispersal distance to be very short.
Sources of information:
(David, Marshall, & Riginos, 2010; Invasive Species Specialist Group (ISSG), 2013)

2.4. Practical potential to be spread by human activities, both directly and indirectly – possible vectors include: commercial bait sales, deliberate illegal stocking, aquaria releases, boat trailers, canals, ballast water exchange, live food trade, rehabilitation, pest control industry, aquaculture escapes, etc.)

A. Does not occur 0
B. Low (human dispersal to new areas occurs almost exclusively by direct means and is infrequent or inefficient) 1
C. Moderate (human dispersal to new areas occurs by direct and indirect means to a moderate extent) 2
D. High (opportunities for human dispersal to new areas by direct and indirect means are numerous, frequent, and successful) 4
U. Unknown

Score 2

Documentation:
Identify dispersal mechanisms:
Human activities which have dispersed Styela plicata include ship ballast water exchange and ship and recreational boat fouling. The live food trade apparently caused the introduction of the species to Australia.
Sources of information:
(de Barros, da Rocha, & Pie, 2009; ISSG, 2013)

2.5. Non-living chemical and physical characteristics that increase competitive advantage (e.g., tolerance to various extremes, pH, DO, temperature, desiccation, fill vacant niche, charismatic species)

A. Possesses no characteristics that increase competitive advantage 0
B. Possesses one characteristic that increases competitive advantage 4
C. Possesses two or more characteristics that increase competitive advantage 8
U. Unknown

Score 8

Documentation:
Evidence of competitive ability:
Contardo Jara et al. (2006) showed S. plicata to be tolerant of disturbance or unstable environmental conditions due to high colonization abilities compared to many other Ascidian species. Pineda et al. (2011, 2012) indicate these sea squirts can adapt to fluctuating temperatures and salinity as well as high pollution levels.
Sources of information:
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

(Contardo Jara et al., 2006; Pineda, López-Legentil, & Turon, 2011; Pineda, Turon, & López-Legentil, 2012)

2.6. Biological characteristics that increase competitive advantage (e.g., high fecundity, generalist/ broad niche space, highly evolved defense mechanisms, behavioral adaptations, piscivorous, etc.)

A. Possesses no characteristics that increase competitive advantage 0
B. Possesses one characteristic that increases competitive advantage 4
C. Possesses two or more characteristics that increase competitive advantage 8
U. Unknown

Score 8

Documentation:
Evidence of competitive ability:
S. plicata has a high growth rate, can self-fertilize, and has a long breeding season. It also has a defense mechanism of deterrent chemicals in their gonads that are passed on to larvae to protect them from predation.
Sources of information:
(Invasive Species Specialist Group (ISSG), 2013; Lambert & Lambert, 1998; Pineda et al., 2011, 2012)

2.7. Other species in the family and/ or genus invasive in New York or elsewhere?

A. No 0
B. Yes 2
U. Unknown

Score 2

Documentation:
Identify species:
Styela clava

3. ECOLOGICAL AMPLITUDE AND DISTRIBUTION

3.1. Current introduced distribution in the northern latitudes of USA and southern latitude of Canada (e.g., between 35 and 55 degrees).

A. Not known from the northern US or southern Canada. 0
B. Established as a non-native in 1 northern USA state and/or southern Canadian province. 1
C. Established as a non-native in 2 or 3 northern USA states and/or southern Canadian provinces. 2
D. Established as a non-native in 4 or more northern USA states and/or southern Canadian provinces, and/or categorized as a problem species (e.g., “Invasive”) in 1 northern state or southern Canadian province. 3
U. Unknown

Score 0

Documentation:
Identify states and provinces:
Sources of information:
• See known introduced range at www.usda.gov, and update with information from states and Canadian provinces.
ISSG 2013

3.2. Current introduced distribution of the species in natural areas in the eight New
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

York State PRISMs (Partnerships for Regional Invasive Species Management)
A. Established in none of the PRISMs 0
B. Established in 1 PRISM 1
C. Established in 2 or 3 PRISMs 3
D. Established in 4 or more PRISMs 5
U. Unknown

Score 0

Documentation:
Describe distribution:
Sources of information:
ISSG 2013

3.3. Number of known, or potential (each individual possessed by a vendor or consumer), individual releases and/or release events
A. None 0
B. Few releases (e.g., <10 annually). 2
C. Regular, small scale releases (e.g., 10-99 annually). 4
D. Multiple, large scale (e.g., >100 annually). 6
U. Unknown

Score U

Documentation:
Describe known or potential releases:
Ship ballast water exchange and boat fouling are potential release methods. While the number of annual releases is unknown, introduction from these methods, particularly boat fouling could be great.
Sources of information:
ISSG 2013

3.4. Current introduced population density, or distance to known occurrence, in northern USA and/or southern Canada.
A. No known populations established. 0
B. Low to moderate population density (e.g., ≤1/4 to < 1/2 native population density) with few other invasives present and/or documented in 1 or more non-adjacent state/province and/or 1 unconnected waterbody. 1
C. High or irruptive population density (e.g., ≥1/2 native population density) with numerous other invasives present and/or documented in 1 or more adjacent state/province and/or 1 connected waterbody. 2
U. Unknown

Score 0

Documentation:
Describe population density:
Sources of information:
ISSG 2013

3.5. Number of habitats the species may invade
A. Not known to invade any natural habitats given at A2.3. 0
B. Known to occur in 2 or 3 of the habitats given at A2.3, with at least 1 or 2 natural habitat(s). 2
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

C. Known to occur in 4 or more of the habitats given at A2.3, with at least 3 natural habitats. 3
U. Unknown.

Score 2

Documentation:
Identify type of habitats where it occurs and degree/type of impacts:
The species can invade marine and brackish habitats.
Sources of information:
ISSG 2013

3.6. Role of anthropogenic (human related) and natural disturbance in establishment (e.g. water level management, man-made structures, high vehicle traffic, major storm events, etc).
A. Requires anthropogenic disturbances to establish. 0
B. May occasionally establish in undisturbed areas but can readily establish in areas with natural or anthropogenic disturbances. 2
C. Can establish independent of any known natural or anthropogenic disturbances. 3
U. Unknown.

Score 2

Documentation:
Identify type of disturbance:
S. plicata is known to inhabit natural areas. However, Glasby et al. (2007) showed them to commonly establish on human-made structures and their recruitment to artificial structures is greater than other species.
Sources of information:
(Glasby, Connell, Holloway, & Hewitt, 2007)

3.7. Climate in native range (e.g., med. to high, ≥5, Climatch score; within 35 to 55 degree latitude; etc.)
A. Native range does not include climates similar to New York (e.g., <10%). 0
B. Native range possibly includes climates similar to portions of New York (e.g., 10-29%). 4
C. Native range includes climates similar to those in New York (e.g., ≥30%). 8
U. Unknown.

Score 8

Documentation:
Describe known climate similarities:
The portions of New York where suitable habitat exists for this species, marine and brackish habitats in Long Island and southern NY include 38% of climates similar to the species native range. However, if looking at the entire state of NY, only 13% of NY climates are similar to the native range. The species range is believed to be limited to the coast of North Carolina and restricted from establishing northward due to mortality from cold northern waters (Fisher 1976). However, with warming waters and suitable climate predicted off Long Island, it appears it may be possible the species could establish there if introduced.
Sources of information:
(Australian Department of Agriculture, Fisheries, and Forestry (ADAFF), 2013)

Total Possible 25
Section Three Total 12

4. DIFFICULTY OF CONTROL
4.1. Re-establishment potential, nearby propagule source, known vectors of re-introduction (e.g. biological supplies, pets, aquaria, aquaculture facilities, connecting waters/ corridors, mechanized transportation, live wells, etc.)
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

A. No known vectors/propagule source for re-establishment following removal. 0
B. Possible re-establishment from 1 vector/propagule source following removal and/or viable <24 hours. 1
C. Likely to re-establish from 2-3 vectors/propagule sources following removal and/or viable 2-7 days. 2
D. Strong potential for re-establishment from 4 or more vectors/propagule sources following removal and/or viable >7 days. 3

U. Unknown. Score 2

Documentation:

Identify source/vectors:
Human activities which have dispersed Styela plicata include ship ballast water exchange and ship and recreational boat fouling. The live food trade apparently caused the introduction of the species to Australia.

Sources of information:
(de Barros et al., 2009; ISSG 2013)

4.2. Status of monitoring and/or management protocols for species

A. Standardized protocols appropriate to New York State are available. 0
B. Scientific protocols are available from other countries, regions or states. 1
C. No known protocols exist. 2
U. Unknown. Score 1

Documentation:

Describe protocols:
There is certainly mention of monitoring and management of this species in other countries such as the UK, Australia, New Zealand and Korea. There is even an International Invasive Sea Squirt Conference (Locke & Carman, 2009). While I could not easily locate these specific protocols online, they appear to exist with methods for control.

Sources of information:
(ISSG, 2013; Locke & Carman, 2009)

4.3. Status of monitoring and/or management resources (e.g. tools, manpower, travel, traps, lures, ID keys, taxonomic specialists, etc.)

A. Established resources are available including commercial and/or research tools 0
B. Monitoring resources may be available (e.g. partnerships, NGOs, etc) 1
C. No known monitoring resources are available 2
U. Unknown. Score 0

Documentation:

Describe resources:
There is certainly mention of monitoring and management of this species in other countries such as the UK, Australia, New Zealand and Korea. There is even an International Invasive Sea Squirt Conference (Locke & Carman, 2009). While I could not easily locate these specific protocols online, they appear to exist with methods for control.

Sources of information:
(ISSG, 2013; Locke & Carman, 2009)

4.4. Level of effort required

A. Management is not required. (e.g., species does not persist without repeated human mediated action.) 0
B. Management is relatively easy and inexpensive; invasive species can be maintained at low abundance causing little or no ecological harm. (e.g., 10 or fewer person-hours of manual effort can eradicate a local infestation in 1 year.) 1
NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

C. Management requires a major short-term investment, and is logistically and politically challenging; eradication is difficult, but possible. (e.g., 100 or fewer person-hours/year of manual effort, or up to 10 person-hours/ year for 2-5 years to suppress a local infestation.)
D. Management requires a major investment and is logistically and politically difficult; eradication may be impossible. (e.g., more than 100 person-hours/ year of manual effort, or more than 10 person hours/year for more than 5 years to suppress a local infestation.)

U. Unknown

Score U

Documentation:
Identify types of control methods and time required:
There are a number of chemical and physical control methods available for S. plicata, but I was unable to locate information on the level of effort required.
Sources of information:
ISSG 2013

Total Possible 7
Section Four Total 3

Total for 4 sections Possible 82
Total for 4 sections 51

C. STATUS OF GENETIC VARIANTS AND HYBRIDS:

At the present time there is no protocol or criteria for assessing the invasiveness of genetic variants independent of the species to which they belong. Such a protocol is needed, and individuals with the appropriate expertise should address this issue in the future. Such a protocol will likely require data on cultivar fertility and identification in both experimental and natural settings.

Genetic variants of the species known to exist:

Hybrids (crosses between different parent species) should be assessed individually and separately from the parent species wherever taxonomically possible, since their invasiveness may differ from that of the parent species. An exception should be made if the taxonomy of the species and hybrids are uncertain, and species and hybrids can not be clearly distinguished in the field. In such cases it is not feasible to distinguish species and hybrids, and they can only be assessed as a single unit.

Hybrids of uncertain origin known to exist:

References for species assessment:

Acknowledgments: The New York Fish and Aquatic Invertebrate Invasiveness Ranking Form incorporates components and approaches used in several other systems, cited in the references below. Valuable contributions by members of the Invasive Species Council and Invasive Species Advisory Committee were incorporated in revisions of this form. Members of the Office of Invasive Species Coordination’s Four-tier Team, who coordinated the effort, included representatives of the New York State Department of Environmental Conservation* (Division of Fish, Wildlife and Marine Resources, Division of Lands and Forests, Division of Water); The Nature Conservancy; New York Natural Heritage Program; New York Sea Grant*; Lake Champlain Sea Grant*; New York State Department of Agriculture and Markets (Division of Plant Industry and Division of Animal Industry); Cornell University (Department of Natural Resources and Department of Entomology); New York State Nursery and Landscape Association; New York Farm Bureau; Brooklyn Botanic Garden; Pet Industry Joint Advisory Council*; Trout Unlimited*; United States Department of Agriculture Animal and Plant Health Inspection Service (Plant Protection and Quarantine and Wildlife Services); New York State Department of Transportation; State University of New York at Albany and Plattsburgh*; and Cary Institute of Ecosystem Studies. Those organizations listed with an asterisk comprised the Fish and Aquatic Invertebrate Working Group.

References for ranking form:

NEW YORK
FISH & AQUATIC INVERTEBRATE INVASIVENESS RANKING FORM

Natural Resources Board Order No. IS-34-06, Invasive Species Identification, Classification and Control. 2008. Wisconsin Department of Natural Resources, Madison Wisconsin.

Standard Methodology to Assess the Risks From Non-native Species Considered Possible Problems to the Environment. 2005. DEFRA.
